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Abstract

In C++ terminology a ‘random access’ data container is a sequential con-

tainer where any element within the container can be accessed with O(1) time

complexity, given the index of that element in the iterative sequence. To date,

no methods have been suggested for creating random access containers utilizing

multiple memory blocks of increasing capacity. This paper details one method

of doing so. Increasingly-large memory blocks have advantages both in terms of

data locality [1][2] and subsequent cache performance, reducing memory waste

for small numbers of elements, and in reducing the overall number of memory

allocations, compared to multiple blocks of the same capacity.

1 Introduction

However much one would like it to be otherwise, there exist no truly universal data

containers. Each computing scenario is different, and the most suitable container

depends largely on context. In the modern C++ world the most commonly-used

container is the “vector”, often known as a “dynamic array” or “array list” in other

languages. The primary reason for its common usage is because, like an array, a vectors

storage mechanism is a singular contiguous block of memory. This can have a positive

performance effect on most modern processors due to the fact that data is read from
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main memory into the CPUs cache in large chunks. Hence reading one item from

main memory into cache will typically read many subsequent items as well, if they are

contiguous in memory.

And if after processing the first item, the second item is already in the CPUs cache,

retrieving it is approximately 100 to 200 times faster than retrieving it from main

memory on most modern computers. Storing data in singular contiguous memory

blocks is one way of ensuring that subsequent items will be read into cache. If items

are instead allocated individually in memory by a container, there is generally no

guarantee that items subsequent to the first item retrieved will be in the same memory

area, and hence they may not be in the CPUs cache after the first item is processed

[3].

An alternative strategy which works particularly well on large items and for large

numbers of items, is storing data in multiple memory blocks. This has an advantage in

terms of expanding the container when it reaches full capacity. When a single memory

block container such as a vector expands, it must provide a new, larger memory block

and then copy the existing items to that memory block. There is a performance

cost to this [4], but also it can create usage issues because it invalidates pointers to

stored elements. Using multiple memory blocks means one does not have to reallocate

elements when expanding the containers capacity, and so pointers to elements will not

be invalidated, and the reallocation performance cost is avoided.

To date, most multiple memory block containers, such as double-ended queue (eg.

C++ std::deque [5]) implementations, have used memory blocks of the same capacity,

which makes the math for accessing elements via their iterative index straightforward.

However this comes at a cost of needing to allocate more memory blocks than would be

necessary if increasingly-large memory blocks were used. So when memory allocation

is an expensive operation, using many memory blocks of the same capacity is a sub-

optimal strategy. In addition, creating larger memory blocks increases the overall

contiguity of items in memory, which may increase performance as described above.

A better strategy is to use memory blocks of increasing capacity, and in this way
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reduce the number of overall allocations required. Most vector implementations use

a doubling rule for capacity, that is to say when the vector expands, it allocates a

memory block twice the capacity of the existing one, copies the existing elements to it,

and then removes the original memory block. While there is some variation in terms of

expansion ratios, this is generally a good “common sense” rule in terms of anticipating

how many more items the program is likely to need in the complete absence of any

guiding input from the programmer themselves.

Similarly in a multiple memory block container we can double the capacity with

each expansion, by creating a new memory block with the same capacity as all of the

previous memory blocks combined. As an example, a container might initially create

a memory block of capacity 7, upon first expansion create another memory block of

capacity 7, then upon second expansion create a memory block of capacity 14. At this

point however a mechanism to allow for random access of individual items within the

container based on their index, in O(1) time complexity, is not obvious.

The method to enable this which I illustrate below relies on each memory blocks

capacity being a power of two, and each new memory block doubling the overall

capacity of the container. Hence if the first blocks capacity were 8, the second would

also need to be 8 and the third would have to be 16. This strategy enables the use

of binary math to calculate, from any elements index, both the memory block that

item is contained within, and the sub-block offset required to access the element. Full

illustration of this principle follows.

2 Definitions

For the purposes of this paper the following terms are defined:

Container index : The index of an element within a container ie. its number in relation

to sequential access of elements.
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Block index : The sequential number of any given memory block used by a container

which utilizes multiple memory blocks.

Sub-block index : The sequential number of any element within a given memory block.

Not related to the container index, although for the first memory block the container

index and sub-block indexes will be the same.

Active bit : A bit set to 1.

Inactive bit : A bit set to 0.

LSB : Least significant bit.

MSB : Most significant bit.

Bitwise index : The index of a bit within a number, when measuring from the LSB to

the MSB. In the unsigned integer 33 the index of the first active bit in the number

is 0 (“1”, representing a value of 1), while the index of the last active bit is 5 (“1”,

representing a value of 32). For unsigned integers the bitwise index is also equivalent

to log base 2 of the number which the bit represents.

MSAB : The most significant active bit of any given number ie. the highest bit which

is set to 1. In the unsigned integer 33 the MSAB is at bitwise index 5.

Note: in this paper all index numbers begin at zero. This means the index of the

LSB in any number is 0, the index of the first memory block in a container is 0, and

the sub-block index of the first element within any given memory block is also 0.
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3 Method

As mentioned, in order for this method to work it is required that the capacity of the

first memory block must be a power of two, and each subsequent memory block must

double the overall capacity of the container. The first blocks capacity is stored as f .

The bitwise index of the MSAB of the first blocks capacity is also stored as m. So,

for example if the first blocks capacity was 8, its MSAB bitwise index would be 3 as

counted from the LSB (whose index is 0):

↓

0 0 0 0 1 0 0 0

Now, say we have a container following this principle of multiple memory blocks

with power-of-2 sizes, which has expanded multiple times and now contains 254 items,

and its initial overall capacity was 8. This would mean its overall capacity would now

be 256. The capacity of each individual memory block it contains at this point would

be 8, 8, 16, 32, 64, and 128 respectively. To calculate which memory block any given

item is contained within, we first require the items index in the container ie. what

its number is in terms of sequential access. We store this index as i then process as

follows.

1. First we subtract 1 from m and store the result as n. If n is negative, we round

upward to zero. Alternatively we can use multiplication with the result of a

comparison with zero to achieve the same result (see pseudocode in next section

for example).

2. We then bit-shift i to the right (in the direction of the LSB) by n and store the

result as j. If i was 9 and n was 2, for example, j would be 2:

Before:

↓

0 0 0 0 1 0 0 1

After:
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↓

0 0 0 0 0 0 1 0

3. Taking j, we calculate its MSAB index and store this as b, which is the index of

the memory block which our item at container index i is stored within. Contin-

uing our earlier example of a container with a first memory block capacity of 8,

if i is 9 then b would be 1 (the second memory block).

4. If b is zero, our item is within the first memory block, and we use i as our index

into that block to find the item. Otherwise we bitshift 1 to the left by (b +

n) and store this as k. This has the effect of storing only the MSAB of i in k.

We then subtract k from i and store the result as s, which is our index into the

memory block at index b. Continuing the example above, i is 9, j is 1 and n is

2 so k would be 8 and s would be 1.

4 Pseudocode

In pseudocode the above process looks like this:

1. m := MsabIndex(f)

2. n := (m != 0) * (m - 1)

3. j := i >> n

4. b := MsabIndex(j)

5. k := (b != 0) << (b + n)

6. s := i - k

(where ‘<<’ and ‘>>’ represent a bitshift left or right respectively, and the result

of a ‘=’ or ‘!=’ comparison is 1 for true and 0 for false).

The MsabIndex function will differ depending on platform, but most modern pro-

cessors contain an instruction designed specifically to calculate the MSAB index for
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any given integer (for example, the BSRL/BSRW instructions on Intel x86 CPUs),

which makes the first and fourth steps of the pseudocode above computationally in-

expensive. In situations where such processor instructions are not available, there are

commonly-understood bit-twiddling processes to achieve the same result, for example

the following C++ code:

unsigned int number; // 32-bit integer we want to find the log base 2 of

unsigned int result = 0; // result will become log base 2 of (number)

while (number >>= 1) { ++result; }

(https://graphics.stanford.edu/ seander/bithacks.html#IntegerLogObvious)

Returning to our example from the section above (where i is 9 and f is 8), this

process becomes:

1. m := MsabIndex(f) (m := 3)

2. n := (m != 0) * (m - 1) (n := 1 * (3 - 1) := 2)

3. j := i >> n (j := 9 >> 2 := 2)

4. b := MsabIndex(j) (b := 1)

5. k := (b != 0) << (b + n) (k := 1 << (1 + 2) := 8)

6. s := i - k (s := 9 - 8 := 1)

This results in a block index (b) of 1, and a sub-block index (s) of 1. Given that the

first block (with index 0) has a capacity of 8, this makes sense. Likewise if we think

of a container where the first blocks capacity (f) is 4, and the container index of the

item we wish to access (i) is 31, we get the following:

1. m := MsabIndex(f) (m := 2)

2. n := (m != 0) * (m - 1) (n := 1 * (2 - 1) := 1)
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3. j := i >> n (j := 31 >> 1 := 15)

4. b := MsabIndex(j) (b := 3)

5. k := (b != 0) << (b + n) (k := 1 << (3 + 1) := 16)

6. s := i - k (s := 31 - 16 := 15)

Resulting in a block index (b) of 3, and a sub-block index (s) of 15.

When the first block capacity is 4, subsequent block capacities will be 4, 8, 16, 32

and so on. Matching these up with the results above, we can see that the block index

of 3 would match the block of capacity 16, and that the sub-block index of 15 matches

where an element at container index 31 in the container would be.

5 Optimization strategies

The most immediately obvious optimization is to store the bitwise index of the MSAB

of the first block, minus 1 (ie. n) for the lifetime of the container, thereby making

the first two instructions of the pseudocode unnecessary. In addition, if one were to

introduce a branching instruction before the first entry in the pseudocode above, to

determine whether the index is smaller than the capacity of the first block (and if so

simply returning b = 0 and s = i), many instructions could be avoided when one is

indexing into the first block. If we do, we can also change line 5 of the pseudocode

from:

k := (b != 0) << (b + n)

to:

k := 1 << (b + n)

This would remove a comparison operation at that stage. However, whether this

would result in a performance increase largely depends on the processor in question

and the compiler; in many modern processors the avoidance of branch instructions is

associated with better performance due to effects on the pipeline of branch prediction

failure [6] [7] [8]. This strategy might also not be appropriate for domains involving
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latency sensitivity, due to the variation in timing depending on which path the branch

takes.

6 Conclusion

By utilizing memory blocks with capacities equal to powers of two and doubling the

overall capacity of the container upon every memory block allocation, we can create a

container with O(1) time complexity when randomly-accessing elements. The calcu-

lations necessary are trivial and involve no additional memory allocations or lookup

tables. Iterating over such a structure is also trivial, and the capacity of each memory

block is calculable from its index. Overall this method shows substantial promise in

terms of enabling fewer memory allocations for multiple-memory-block containers such

as deques while making reallocation upon capacity expansion unnecessary.
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